Tournament Solutions

and their Applications to Multiagent Decision-Making

Felix Brandt

Technische Universität München

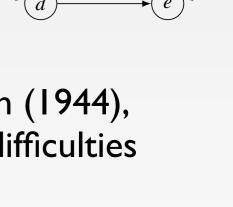
Multiagent Decision-Making

• Collective decision-making

- Social choice theory
- How to aggregate the possibly conflicting preferences of multiple agents?
- Adversarial decision-making
 - Theory of zero-sum games
 - Which strategy should be pursued when interacting with other agents?
- Coalitional decision-making
 - Cooperative game theory
 - Which coalitions of agents will form and how should they divide the proceeds of cooperations?

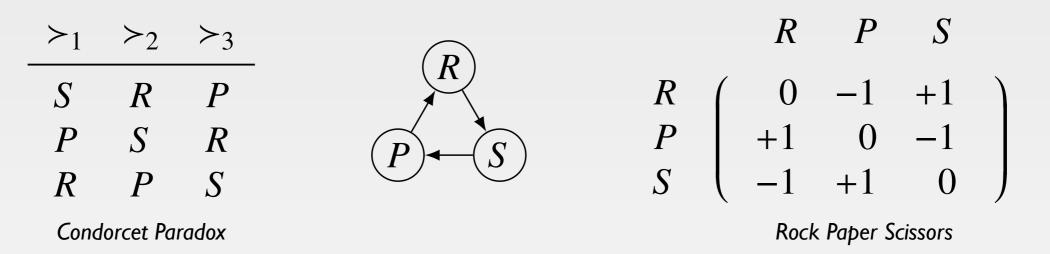
The Trouble with Tournaments

- Problem: Find "best" elements according to some binary dominance relation
 - Set of alternatives is finite
 - Dominance relation is asymmetric and complete
 - Maximal elements need not exist ("Condorcet paradox" in social choice theory)
 - According to game theorists von Neumann & Morgenstern (1944), cyclical dominations are "one of the most characteristic difficulties which a theory of these phenomena must face."
- Numerous applications
 - social choice theory, cooperative and non-cooperative game theory
 - also multi-criteria decision analysis, sports tournaments, psychometrics, biology, argumentation theory, webpage and journal ranking, etc.



b

Social Choice & Game Theory



- Theorem (McGarvey, 1953): Any asymmetric relation can be induced by majority rule.
 - When the number of voters is odd and individual preferences are strict, then any relation induced by majority rule is asymmetric and complete.
- Tournament games
 - Subclass of symmetric two-player zero-sum games
 - players may only win, lose, or draw
 - game ends in draw iff both players play the same action

Terminology & Notation

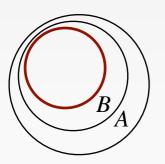
- Finite set of alternatives A
- Asymmetric and complete dominance relation $\succ \subseteq A \times A$
- Tournament T = (A, >)
- $\mathcal{T}(A)$: Set of all tournaments on A
- Tournament solution S associates with each tournament T a nonempty subset of alternatives (the "winners" of T according to S) $S : \mathcal{T}(A) \to \mathcal{P}(A) \setminus \emptyset$
 - stable with respect to tournament isomorphisms: $S \circ \pi = \pi \circ S$
 - selects maximal element whenever one exists: $max(T) \subseteq S(T)$
- $S(B) = S(T|_B) = S((B, \geq|_B))$ for $B \subseteq A$
- Dominion $D_{(A,\succ)}(a) = \{ b \in A \mid a \succ b \}$
- Dominators $\overline{D}_{(A,\succ)}(a) = \{ b \in A \mid b \succ a \}$

Desirable Properties

- Monotonicity (MON)
 - An alternative remains in the choice set when its dominion is extended.

 $a \in S(T) \Rightarrow a \in S(T') \quad \forall T = (A, \succ), T' = (A, \succ'), a \in A:$ $T|_{A \setminus \{a\}} = T'|_{A \setminus \{a\}} \land D_T(a) \subseteq D_{T'}(a)$

- Strong Superset Property (SSP)
 - The choice set is invariant under removal of unchosen alternatives.



 $S(B) = S(A) \quad \forall T = (A, \succ), B \subseteq A:$ $S(A) \subseteq B$

• Further properties: idempotency (IDE), weak superset property (WSP), independence of unchosen alternatives (IUA), composition-consistency (COM), irregularity (IRR)

Tournament Solution Hierarchy

(B., 2008)

via qualified subsets	via stable sets
Banks set (Banks, 1985) Minimal covering s	
	Tournament equilibrium set (Schwartz, 1990)
Copeland set (Zermelo, 1929; Copeland, 1951)	
Uncovered set ((Fishburn, 1977; Miller, 1980) extending set
Со	ndorcet non-losers (Condorcet, 1785)
Bipartisan set (Laffond et al., 1993)	
- ````````````````````````````````````	Top cycle (Good, 1971; Smith, 1973)
later set (Slater 1961)	Markov set (Daniels, 1969)

- Infinite hierarchy of tournament solutions
 - improve understanding of tournament solutions and their relationships
 - unify proofs of properties and inclusions
 - define new tournament solutions, e.g., minimal extending set

The Top Cycle

(Good, 1971; Smith, 1973)

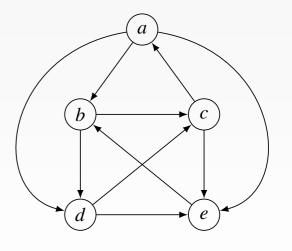
- A dominating set is a set of alternatives such that every alternative in the set dominates every outside alternative.
 - The set of all dominating sets is totally ordered by set inclusion.
 - Every tournament contains a unique minimal dominating set.
- The minimal dominating set is called the top cycle (TC).
 - also known as GETCHA or Smith set
- Theorem (Bordes, 1976): The top cycle is the smallest tournament solution satisfying β⁺.
 - It also satisfies WSP, SSP, MON, IUA.
- How can we efficiently compute the top cycle?

TC (linear-time algorithm)

- Algorithm for computing TC_a, the minimal dominating set containing a given alternative a
 - Initialize working set B with {a} and then iteratively add all alternatives that dominate an alternative in B until no more such alternatives can be found.
 - Computing TC_a for every alternative a and then choosing the smallest set yields an $O(n^3)$ algorithm.
- Alternatives with maximal degree (the Copeland winners) are always contained in TC (and linear-time computable).

procedure
$$TC(A, >)$$

 $B \leftarrow C \leftarrow CO(A, >)$
loop
 $C \leftarrow \bigcup_{a \in C} \overline{D}_{A \setminus B}(a)$
if $C = \emptyset$ **then return** B **end if**
 $B \leftarrow B \cup C$
end loop



More on the Top Cycle

- Theorem (Deb, 1977): The top cycle consists precisely of the maximal elements of the asymmetric part of the transitive closure of the dominance relation.
 - Alternative linear-time algorithm using Kosaraju's or Tarjan's algorithm for finding strongly connected components
- There is a first-order expression for membership in TC (B., Fischer, & Harrenstein; 2009): $TC(x) \leftrightarrow \forall y \forall z (\forall v (z \ge^3 v \rightarrow z \ge^2 v) \land z \ge^2 x \rightarrow z \ge^2 y)$
 - Computing TC is in AC⁰
- The top cycle is very large.
 - In fact, it is so large that it may contain Pareto-dominated alternatives when used as a social choice function.

The Uncovered Set

(Fishburn, 1977; Miller, 1980)

- Covering relation: a covers b if $D(b) \subset D(a)$.
 - The covering relation is a transitive subrelation of the dominance relation.
- The uncovered set (UC) consists of all uncovered alternatives.
 - UC contains the maximal element of inclusion-maximal subsets that admit a maximal element.
- Example
 - ► UC = {a,b,c,d}
- Theorem (Moulin, 1986): The uncovered set is the smallest tournament solution satisfying γ.
 - It also satisfies WSP, MON, and COM and is contained in TC.

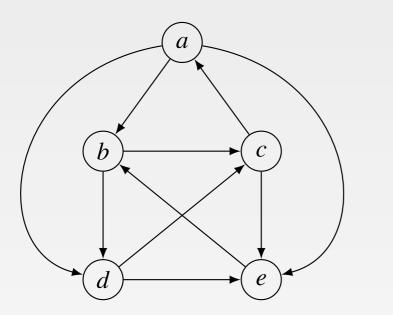
b

UC algorithm

- Straightforward n³ algorithm
- Equivalent characterization of UC
 - UC consists precisely of those alternatives that reach every other alternative on a domination path of length at most two. (Shepsle & Weingast, 1984).
- Algorithm via matrix multiplication
 - Fastest known matrix multiplication algorithm (Coppersmith & Winograd, 1990): O(n^{2.38})
 - Matrix multiplication is believed to be feasible in linear time $(O(n^2))$.

procedure UC(A, >)for all $i, j \in A$ do if $i > j \lor i = j$ then $m_{ij} \leftarrow 1$ else $m_{ij} \leftarrow 0$ end if end for $M \leftarrow (m_{ij})_{i,j \in A}$ $U \leftarrow (u_{ij})_{i,j \in A} \leftarrow M^2 + M$ $B \leftarrow \{i \in A \mid \forall j \in A : u_{ij} \neq 0\}$ return B

UC algorithm (example)



procedure UC(A, >)for all $i, j \in A$ do if $i > j \lor i = j$ then $m_{ij} \leftarrow 1$ else $m_{ij} \leftarrow 0$ end if end for $M \leftarrow (m_{ij})_{i,j \in A}$ $U \leftarrow (u_{ij})_{i,j \in A} \leftarrow M^2 + M$ $B \leftarrow \{i \in A \mid \forall j \in A : u_{ij} \neq 0\}$ return B

The Minimal Covering Set

(Dutta, 1988)

- A covering set is a set of alternatives B such that a∉UC(B∪{a}) for all alternatives a∉B.
 - Theorem (Dutta, 1988): Every tournament contains a unique minimal covering set (MC).
- Example
 - Covering sets: {a,b,c,d,e}, {a,b,c,d}, and {a,b,c}
 - $MC = \{a,b,c\}$

Bhaskar Dutta

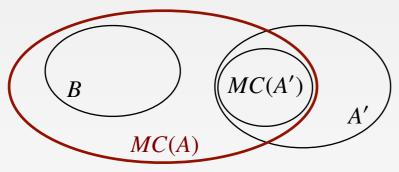
- Theorem (Dutta, 1988): The minimal covering set is the smallest tournament solution satisfying SSP and γ^* .
 - It also satisfies WSP, MON, IUA, and COM and is contained in UC.
 - MC is equivalent to a game-theoretic concept proposed by Shapley in 1953 (Duggan & Le Breton, 1996)

MC (complexity)

- No obvious reason why computing MC should be in NP
 - Verifying whether a set is a covering set is easy, verifying minimality is not.
 - Checking whether a set is MC and checking whether an alternative is contained in MC is in coNP.
 - A covering set is *not* minimal if there exists a proper covering subset.
- Straightforward iterative algorithms do not work
 - start with entire set and remove alternatives
 - there may be no covering sets in between entire set and MC
 - start with singleton and add alternatives
 - unclear which of the alternatives that are not covered by the current working set should be included

MC (algorithm)

- Three insights needed for polynomial-time algorithm
 - Lemma: If $B \subseteq MC(A)$ and $A' = \bigcup_{a \in A \setminus B} (UC(B \cup \{a\}) \cap \{a\})$ then $MC(A') \subseteq MC(A)$.

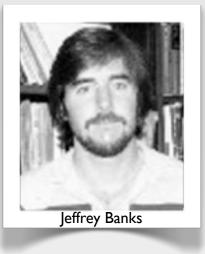


- For every proper subset of MC, the lemma tells us how to find another disjoint and non-empty subset of MC.
- Lemma (Laffond, Laslier, & Le Breton; 1993): Every tournament game contains a unique Nash equilibrium, the support of which (the so-called bipartisan set BP) is contained in MC.
- The bipartisan set can be computed via linear programming.

MC (algorithm, ctd.)

 Theorem (B. and Fischer, 2008): The minimal covering set can be computed in polynomial time.

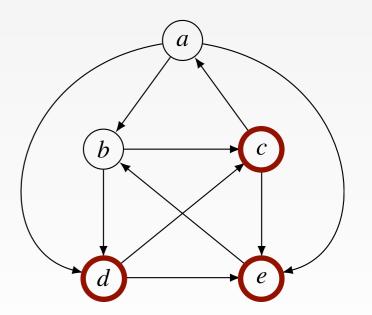
procedure MC(A, >) $B \leftarrow BP(A, >)$ loop $A' \leftarrow \bigcup_{a \in A \setminus B} (UC(B \cup \{a\}) \cap \{a\})$ if $A' = \emptyset$ then return B end if $B \leftarrow B \cup BP(A', >)$ end loop **procedure** BP(A, >) **for all** $i, j \in A$ **do if** i > j **then** $m_{ij} \leftarrow 1$ **else if** j > i **then** $m_{ij} \leftarrow -1$ **else** $m_{ij} \leftarrow 0$ **end if end for** $s \in \{s \in \mathbb{R}^n \mid \sum_{j \in A} s_j \cdot m_{ij} \le 0 \quad \forall i \in A$ $\sum_{j \in A} s_j = 1$ $s_j \ge 0 \qquad \forall j \in A\}$ $B \leftarrow \{a \in A \mid s_a > 0\}$ **return** B



Banks set

(Banks, 1985)

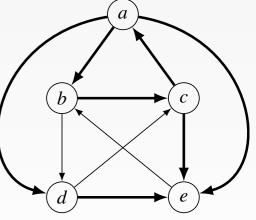
- The Banks set (BA) consists of the maximal elements of maximal transitive subsets.
- Theorem (B., 2008): The Banks set is the smallest tournament solution satisfying strong retentiveness.
 - It also satisfies WSP, MON, IRR, COM, and is contained in UC.
- Random alternatives in BA can be found efficiently.
 - ► BA = {a,b,c,d}
- Theorem (Woeginger, 2003): Deciding whether a given alternative is contained in BA is NP-complete.

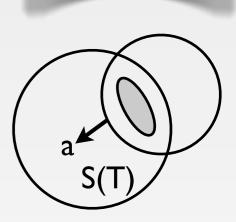


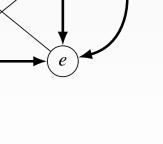
Tournament Equilibrium Set

(Schwartz, 1990)

- A tournament solution S is retentive if $S(\overline{D}(a)) \subseteq S(T)$ for all $a \in S(T)$ and all tournaments T.
 - Idea: No alternative in the choice set should be "properly" dominated by an outside alternative.
- TEQ is the smallest tournament solution satisfying retentiveness.
 - Characterization relies on Schwartz's conjecture.
 - TEQ satisfies IRR and COM and is contained in BA.
- Example: TEQ = {a,b,c}

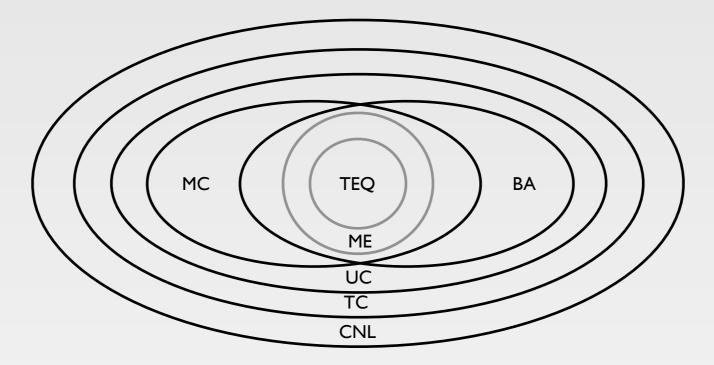






The Mystery of TEQ

- Theorem (Laffond et al., 1993; Houy, 2009): The following statements are equivalent:
 - Schwartz's conjecture
 - TEQ satisfies WSP.
 - TEQ satisfies SSP.
 - TEQ satisfies MON.
 - TEQ satisfies IUA.
- Furthermore, these statements imply that TEQ is contained in MC.
- All or nothing: Either TEQ is a most appealing tournament solution or it is severely flawed.
- Theorem (B., Fischer, Harrenstein, Mair; 2010): Deciding whether an alternative is contained in TEQ is NP-hard.
 - The best known upper bound is PSPACE!



			1	MON	WSP	SSP	IDE	IUA	сом	IRR	EFFICIENTLY COMPUTABLE
$S_{\mathcal{M}_2}$	CNL	(Condorcet, 1785)		\checkmark	\checkmark	-	-	\checkmark	-	-	\checkmark
•			Ι	\checkmark	\checkmark	-	-	-	-	-	\checkmark
$S_{\mathcal{M}}$	UC	(Fishburn, 1977; Miller, 1980)	I	\checkmark	\checkmark	-	-	-	\checkmark	-	\checkmark
$S_{\mathcal{M}^*}$	BA	(Banks, 1985)	Ι	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	NP-hard
$\widehat{S}_{\mathcal{M}_2}$	ТС	(Good, 1971; Smith, 1973)	Ι	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
• •			Ι	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
$\widehat{S}_{\mathcal{M}}$	MC	(Dutta, 1988)	I	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark
$\widehat{S}_{\mathcal{M}^*}$	ME	(Brandt, 2008)		\checkmark	NP-hard						
TEQ	TEQ	(Schwartz, 1990)		\checkmark	NP-hard						