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Multiagent Decision-Making

® C(Collective decision-making

»  Social choice theory

» How to aggregate the possibly conflicting preferences of multiple
agents!?

® Adversarial decision-making

» Theory of zero-sum games
»  Which strategy should be pursued when interacting with other agents?

® C(Coalitional decision-making

» Cooperative game theory

»  Which coalitions of agents will form and how should they divide the
proceeds of cooperations!?
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The Trouble with Tournaments

® Problem: Find “best” elements according to
some binary dominance relation

» Set of alternatives is finite
» Dominance relation is asymmetric and complete

» Maximal elements need not exist (& O
(“Condorcet paradox” in social choice theory)
» According to game theorists von Neumann & Morgenstern (1944),

cyclical dominations are “one of the most characteristic difficulties
which a theory of these phenomena must face.”

® Numerous applications

» social choice theory, cooperative and non-cooperative game theory

- also multi-criteria decision analysis, sports tournaments, psychometrics, biology,
argumentation theory, webpage and journal ranking, etc.



Social Choice & Game Theory
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Condorcet Paradox Rock Paper Scissors
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® Theorem (McGarvey, 1953): Any asymmetric relation can
be induced by majority rule.

»  When the number of voters is odd and individual preferences are

strict, then any relation induced by majority rule is asymmetric and
complete.

® Tournament games

» Subclass of symmetric two-player zero-sum games
- players may only win, lose, or draw

- game ends in draw iff both players play the same action
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Terminology & Notation

Finite set of alternatives A

Asymmetric and complete dominance relation >C A X A
Tournament T = (A, >)

7 (A): Set of all tournaments on A

Tournament solution S associates with each tournament 7 a non-
empty subset of alternatives (the “winners” of 1 according to )

S:TA) ->PAN\NOD
- stable with respect to tournament isomorphisms: S or =m0 §

- selects maximal element whenever one exists: m>aX(T) cS(T)
S(B) =S8(T|p) =S((B,>|p)) for BC A
Dominion D) (a) ={b€A|a> b}

Dominators D4 »y(a) = {b €A |b > a)



Desirable Properties

® Monotonicity (MON)

» An alternative remains in the choice set when its dominion is extended.
aceS(T)=>aeS(T) VYT =A,>),T =(A,>"),acA:

T|avi = T |a\jy A Dr(a) € Dy (a)

® Strong Superset Property (SSP)

» The choice set is invariant under removal of unchosen alternatives.

S(B)=S(A) VI =(A,>),BCA:
S(A)C B

® Further properties: idempotency (IDE), weak superset property

(WSP), independence of unchosen alternatives (IlUA), composition-
consistency (COM), irregularity (IRR)



Tournament Solution Hierarchy

(B.,2008)

via qualified subsets via stable sets

Banks set (Banks, 1985)
Minimal . ¢ (Dutea, 1988)

” Tournament equilibrium set (Schwartz, 1990)

Uncovered set (Fishburn, 1977; Mijginli%83) extending set

Condorcet non-losers (Condorcet, |1785)

Bipartisan set (Laffond et al., 1993)

Top cycle (Good 1971 Smith 1973)

Slater set (Slater, [961) Markov set (Daniels, 1969)

® |nfinite hierarchy of tournament solutions

» improve understanding of tournament solutions and their relationships
» unify proofs of properties and inclusions
» define new tournament solutions, e.g., minimal extending set



The Top Cycle

(Good, 1971; Smith, 1973)

A dominating set is a set of alternatives such that every
alternative in the set dominates every outside alternative.

» The set of all dominating sets is totally ordered by set inclusion.
» Every tournament contains a unique minimal dominating set.

The minimal dominating set is called the top cycle (TC).
» also known as GETCHA or Smith set

Theorem (Bordes, 1976):The top cycle is the smallest
tournament solution satisfying 3*.

» It also satisfies WSP, SSP MON, IUA.

How can we efficiently compute the top cycle!?
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TC (linear-time algorithm)

® Algorithm for computing TC,, the minimal dominating set
containing a given alternative a

» Initialize working set B with {a} and then iteratively add all alternatives
that dominate an alternative in B until no more such alternatives can
be found.

» Computing TC, for every alternative a and then choosing the smallest
set yields an O(n3) algorithm.

® Alternatives with maximal degree (the Copeland winners) are
always contained in TC (and linear-time computable).

» procedure TC(A, >)
B« C«— COA,>»)
loop
C « UaEC DA\B(a)
if C = () then return B end if
B« BUC
end loop




More on the Top Cycle

® Theorem (Deb, 1977): The top cycle consists precisely of the
maximal elements of the asymmetric part of the transitive
closure of the dominance relation.

» Alternative linear-time algorithm using Kosaraju’s or Tarjan’s algorithm
for finding strongly connected components

® There is a first-order expression for membership in TC
(B., Fischer, & Harrenstein; 2009):

TC(x) & YyVz(VWw(@z="v—>z=*VAz>"x > 7>Y)
» Computing TC is in AC°

® The top cycle is very large.

» Infact, it is so large that it may contain Pareto-dominated alternatives
when used as a social choice function.
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The Uncovered Set

(Fishburn, 1977; Miller, 1980)

Covering relation: a covers b if D(b)cD(a).

Nkl vt
Nicholas Miller
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The covering relation is a transitive subrelation of the dominance

relation.

The uncovered set (UC) consists of all uncovered alternatives.
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Theorem (Moulin, 1986): The uncovered set is
the smallest tournament solution satisfying .

4

UC contains the maximal element of inclusion-maximal subsets that

admit a2 maximal element.

Example

UC = {a,b,c,d}

It also satisfies WSP, MON, and COM and is contained in TC.
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UC algorithm

e Straightforward n? algorithm

® Equivalent characterization of UC

» UC consists precisely of those alternatives that reach every other
alternative on a domination path of length at most two.

(Shepsle & Weingast, 1984).

® Algorithm via matrix multiplication procedure UC(A, >)
- Fastest known matrix multiplication algorithm for all i, j € Ado
(Coppersmith & Winograd, 1990): O(n%38) ifi > jVvi=jthenm;; « 1

- Matrix multiplication is believed to be feasible else m;; < O end if
in linear time (O(n?)). end for
M « (mjj)i jea
U « (uij)i,jeA — M*+M
B—{iecA|VYjeA: u;+0}
return B



UC algorithm (example)

procedure UC(A, >)

foralli,j € Ado
if i > jVvi=jthenm;; < 1
else m;; < 0 end if

end for

M « (mjj)i jea

U « (uij)i,jeA — M +M

B—{icA|VjeA: u;+0}

return B
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(Dutta, 1988)

' Bhaskar Dutta

® A covering set is a set of alternatives B such that agUC(Bu{a})
for all alternatives a¢B.

» Theorem (Dutta, 1988): Every tournament contains a unique
minimal covering set (MC).

® Example
»  Covering sets: {a,b,c,d,e}, {a,b,c,d}, and {a,b,c}
» MC={ab,c}

® Theorem (Dutta, 1988): The minimal covering set is the smallest
tournament solution satisfying SSP and y*.

» It also satisfies WSP, MON, IUA, and COM and is contained in UC.

» MC is equivalent to a game-theoretic concept proposed by Shapley in
1953 (Duggan & Le Breton, 1996)
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MC (complexity)

® No obvious reason why computing MC should be in NP

» Verifying whether a set is a covering set is easy, verifying minimality is
not.
» Checking whether a set is MC and checking whether an alternative is

contained in MC is in coNP.
- A covering set is not minimal if there exists a proper covering subset.

® Straightforward iterative algorithms do not work

» start with entire set and remove alternatives
- there may be no covering sets in between entire set and MC

» start with singleton and add alternatives

- unclear which of the alternatives that are not covered by the current working
set should be included



MC (algorithm)

® Three insights needed for polynomial-time algorithm

»  Lemma:lf BC MC(A) and A’ = U (UC(B U {a)) N {a))
then MC(A") C MC(A). 4cA\B
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MC(A)
- For every proper subset of MC, the lemma tells us how to find another disjoint
and non-empty subset of MC.

» Lemma (Laffond, Laslier, & Le Breton; 1993): Every tournament game
contains a unique Nash equilibrium, the support of which (the so-called
bipartisan set BP) is contained in MC.

» The bipartisan set can be computed via linear programming.



MC (algorithm, ctd.)

® Theorem (B.and Fischer, 2008): The minimal covering set can be
computed in polynomial time.

procedure MC(A, >) procedure BP(A, >)
B <« BP(A, >) foralli,j€ Ado
loop if i > jthen m;; « 1
A" — Uueas(UC(B U {a}) N {a}) elseif j > i then m;; « -1
if A” = ( then return B end if else m;; < 0 end if
B «— BUBP(A’, >) end for
end loop sE{sER"| Xjeasj-m; <0 VieA
ZjeA sj =1
Sj > O VJ S A}
B—{aceA|s, >0}
return B



Banks set

(Banks, 1985)

Jefﬁ‘:ay Banks

® The Banks set (BA) consists of the maximal elements of
maximal transitive subsets.

® Theorem (B., 2008): The Banks set is the smallest tournament
solution satisfying strong retentiveness.

» It also satisfies WSP. MON, IRR, COM, and is contained in UC.

® Random alternatives in BA can be found
efficiently.

» BA ={ab,c,d}

® Theorem (Woeginger, 2003): Deciding
whether a given alternative is contained
in BA is NP-complete.




Tournament Equilibrium Set

(Schwartz, 1990)

o A tournament solution S is retentive if
S(D(a))CS(T) for all aeS(T) and all tournaments T.

» ldea: No alternative in the choice set should be “properly”
dominated by an outside alternative.

e T[EQ is the smallest tournament solution satisfying retentiveness.

» Characterization relies on Schwartz’s conjecture.
» TEQ satisfies IRR and COM and is contained in BA.

® Example:TEQ = {a,b,c}




The Mystery of TEQ

Theorem (Laffond et al., 1993; Houy, 2009): The following
statements are equivalent:

Schwartz’s conjecture

TEQ satisfies VVSP.
TEQ satisfies SSP.
TEQ satisfies MON.
TEQ satisfies lUA.
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Furthermore, these statements imply that TEQ is contained in MC.

All or nothing: Either TEQ is a most appealing tournament solution
or it is severely flawed.

Theorem (B., Fischer, Harrenstein, Mair; 2010): Deciding whether
an alternative is contained in TEQ is NP-hard.

» The best known upper bound is PSPACE!
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