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Tournament Solutions

Multiagent Decision-Making

• Collective decision-making
‣ Social choice theory
‣ How to aggregate the possibly conflicting preferences of multiple 

agents?

• Adversarial decision-making
‣ Theory of zero-sum games
‣ Which strategy should be pursued when interacting with other agents?

• Coalitional decision-making
‣ Cooperative game theory
‣ Which coalitions of agents will form and how should they divide the 

proceeds of cooperations?
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Tournament Solutions

The Trouble with Tournaments

• Problem: Find “best” elements according to 
some binary dominance relation
‣ Set of alternatives is finite
‣ Dominance relation is asymmetric and complete
‣ Maximal elements need not exist 

(“Condorcet paradox” in social choice theory)
‣ According to game theorists von Neumann & Morgenstern (1944), 

cyclical dominations are “one of the most characteristic difficulties 
which a theory of these phenomena must face.”

• Numerous applications
‣ social choice theory, cooperative and non-cooperative game theory 

- also multi-criteria decision analysis, sports tournaments, psychometrics, biology, 
argumentation theory, webpage and journal ranking, etc.
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Tournament Solutions

Social Choice & Game Theory

• Theorem (McGarvey, 1953):  Any asymmetric relation can 
be induced by majority rule.
‣ When the number of voters is odd and individual preferences are 

strict, then any relation induced by majority rule is asymmetric and 
complete.

• Tournament games
‣ Subclass of symmetric two-player zero-sum games 

- players may only win, lose, or draw
- game ends in draw iff both players play the same action
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Tournament Solutions

Terminology & Notation

‣ Finite set of alternatives
‣ Asymmetric and complete dominance relation
‣ Tournament
‣         :  Set of all tournaments on 
‣ Tournament solution    associates with each tournament    a non-

empty subset of alternatives (the “winners” of    according to   )

- stable with respect to tournament isomorphisms: 
- selects maximal element whenever one exists: 

‣                                           for 
‣ Dominion            

‣ Dominators  
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�⊆ A × A
A

T (A) A

max
�

(T ) ⊆ S (T )

S : T (A)→ P(A) \ ∅

T
T

S
S

T = (A,�)

S (B) = S (T |B) = S ((B,�|B)) B ⊆ A

S ◦ π = π ◦ S

D(A,�)(a) = { b ∈ A | a � b}
D(A,�)(a) = { b ∈ A | b � a}



Tournament Solutions

Desirable Properties
• Monotonicity (MON)
‣ An alternative remains in the choice set when its dominion is extended.

• Strong Superset Property (SSP)
‣  The choice set is invariant under removal of unchosen alternatives.

• Further properties: idempotency (IDE), weak superset property 
(WSP), independence of unchosen alternatives (IUA), composition-
consistency (COM), irregularity (IRR) 
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a ∈ S (T )⇒ a ∈ S (T �) ∀T = (A,�),T � = (A,��), a ∈ A :
T |A\{a} = T �|A\{a} ∧ DT (a) ⊆ DT � (a)

S (B) = S (A) ∀T = (A,�), B ⊆ A :
S (A) ⊆ BB A
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Tournament Solutions

Tournament Solution Hierarchy

• Infinite hierarchy of tournament solutions
‣ improve understanding of tournament solutions and their relationships
‣ unify proofs of properties and inclusions
‣ define new tournament solutions, e.g., minimal extending set
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Uncovered set (Fishburn, 1977; Miller, 1980)

Banks set (Banks, 1985)

Top cycle (Good, 1971; Smith, 1973)

Minimal covering set (Dutta, 1988)
Tournament equilibrium set (Schwartz, 1990)

Copeland set (Zermelo, 1929; Copeland, 1951)

Bipartisan set (Laffond et al., 1993)

Slater set (Slater, 1961)
Markov set (Daniels, 1969)

Condorcet non-losers (Condorcet, 1785)

Minimal extending set

via qualified subsets via stable sets

(B., 2008)



Tournament Solutions

The Top Cycle

• A dominating set is a set of alternatives such that every 
alternative in the set dominates every outside alternative.
‣ The set of all dominating sets is totally ordered by set inclusion.
‣ Every tournament contains a unique minimal dominating set.

• The minimal dominating set is called the top cycle (TC).
‣ also known as GETCHA or Smith set

• Theorem (Bordes, 1976): The top cycle is the smallest 
tournament solution satisfying β+.
‣ It also satisfies WSP, SSP, MON, IUA.

• How can we efficiently compute the top cycle?
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(Good, 1971; Smith, 1973)
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Tournament Solutions

TC (linear-time algorithm)
• Algorithm for computing TCa,  the minimal dominating set 

containing a given alternative a
‣ Initialize working set B with {a} and then iteratively add all alternatives 

that dominate an alternative in B until no more such alternatives can 
be found.

‣ Computing TCa for every alternative a and then choosing the smallest 
set yields an O(n3) algorithm.

• Alternatives with maximal degree (the Copeland winners) are 
always contained in TC (and linear-time computable).
‣  
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procedure TC(A,�)
B← C ← CO(A,�)
loop

C ← �a∈C DA\B(a)
if C = ∅ then return B end if
B← B ∪C

end loop



Tournament Solutions

More on the Top Cycle

• Theorem (Deb, 1977): The top cycle consists precisely of the 
maximal elements of the asymmetric part of the transitive 
closure of the dominance relation.
‣ Alternative linear-time algorithm using Kosaraju’s or Tarjan’s algorithm 

for finding strongly connected components

• There is a first-order expression for membership in TC 
(B., Fischer, & Harrenstein; 2009):

‣ Computing TC is in AC0

• The top cycle is very large.
‣ In fact, it is so large that it may contain Pareto-dominated alternatives 

when used as a social choice function.
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TC(x) ↔ ∀y∀z (∀v (z �3 v→ z �2 v) ∧ z �2 x→ z �2 y)



Tournament Solutions

The Uncovered Set

•  Covering relation: a covers b if D(b)⊂D(a).             
‣ The covering relation is a transitive subrelation of the dominance 

relation.

• The uncovered set (UC) consists of all uncovered alternatives.
‣ UC contains the maximal element of inclusion-maximal subsets that 

admit a maximal element.

• Example
‣  UC = {a,b,c,d}

• Theorem (Moulin, 1986): The uncovered set is 
the smallest tournament solution satisfying γ.
‣ It also satisfies WSP, MON, and COM and is contained in TC.
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(Fishburn, 1977; Miller, 1980)
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Tournament Solutions

UC algorithm

• Straightforward n3 algorithm

• Equivalent characterization of UC
‣ UC consists precisely of those alternatives that reach every other 

alternative on a domination path of length at most two. 
(Shepsle & Weingast, 1984).

• Algorithm via matrix multiplication
- Fastest known matrix multiplication algorithm 

(Coppersmith & Winograd, 1990): O(n2.38)
- Matrix multiplication is believed to be feasible 

in linear time (O(n2)).

12

procedure UC(A,�)
for all i, j ∈ A do

if i � j ∨ i = j then mi j ← 1
else mi j ← 0 end if

end for
M ← (mi j)i, j∈A
U ← (ui j)i, j∈A ← M2 + M
B← {i ∈ A | ∀ j ∈ A : ui j � 0}
return B



Tournament Solutions

UC algorithm (example)
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
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procedure UC(A,�)
for all i, j ∈ A do

if i � j ∨ i = j then mi j ← 1
else mi j ← 0 end if

end for
M ← (mi j)i, j∈A
U ← (ui j)i, j∈A ← M2 + M
B← {i ∈ A | ∀ j ∈ A : ui j � 0}
return B



Tournament Solutions

The Minimal Covering Set

• A covering set is a set of alternatives B such that a∉UC(B∪{a}) 
for all alternatives a∉B.
‣ Theorem (Dutta, 1988): Every tournament contains a unique 

minimal covering set (MC).

• Example
‣  Covering sets: {a,b,c,d,e}, {a,b,c,d}, and {a,b,c}
‣  MC = {a,b,c}

• Theorem (Dutta, 1988): The minimal covering set is the smallest 
tournament solution satisfying SSP and γ*.
‣ It also satisfies WSP, MON, IUA, and COM and is contained in UC.
‣ MC is equivalent to a game-theoretic concept proposed by Shapley in 

1953 (Duggan & Le Breton, 1996)
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(Dutta, 1988)
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Tournament Solutions

MC (complexity)

• No obvious reason why computing MC should be in NP
‣ Verifying whether a set is a covering set is easy, verifying minimality is 

not.
‣ Checking whether a set is MC and checking whether an alternative is 

contained in MC is in coNP.
- A covering set is not minimal if there exists a proper covering subset.

• Straightforward iterative algorithms do not work
‣ start with entire set and remove alternatives

- there may be no covering sets in between entire set and MC

‣ start with singleton and add alternatives
- unclear which of the alternatives that are not covered by the current working 

set should be included
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Tournament Solutions

MC (algorithm)

• Three insights needed for polynomial-time algorithm
‣ Lemma: If                    and

then                           .

- For every proper subset of MC, the lemma tells us how to find another disjoint 
and non-empty subset of MC.

‣ Lemma (Laffond, Laslier, & Le Breton; 1993): Every tournament game 
contains a unique Nash equilibrium, the support of which (the so-called 
bipartisan set BP) is contained in MC.

‣ The bipartisan set can be computed via linear programming.
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A� =
�

a∈A\B
(UC(B ∪ {a}) ∩ {a})

MC(A�) ⊆ MC(A)
B ⊆ MC(A)

B
A�

MC(A�)

MC(A)



Tournament Solutions

MC (algorithm, ctd.)

• Theorem (B. and Fischer, 2008): The minimal covering set can be 
computed in polynomial time.
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procedure MC(A,�)
B← BP(A,�)
loop

A� ← �a∈A\B(UC(B ∪ {a}) ∩ {a})
if A� = ∅ then return B end if
B← B ∪ BP(A�,�)

end loop

procedure BP(A,�)
for all i, j ∈ A do

if i � j then mi j ← 1
else if j � i then mi j ← −1
else mi j ← 0 end if

end for
s ∈ {s ∈ Rn | � j∈A s j · mi j ≤ 0 ∀i ∈ A�

j∈A s j = 1
s j ≥ 0 ∀ j ∈ A}

B← { a ∈ A | sa > 0 }
return B



Tournament Solutions

Banks set

•  The Banks set (BA) consists of the maximal elements of 
maximal transitive subsets.

• Theorem (B., 2008): The Banks set is the smallest tournament 
solution satisfying strong retentiveness.
‣ It also satisfies WSP, MON, IRR, COM, and is contained in UC.

• Random alternatives in BA can be found 
efficiently.
‣ BA = {a,b,c,d}

• Theorem (Woeginger, 2003): Deciding 
whether a given alternative is contained 
in BA is NP-complete.
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(Banks, 1985)
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Tournament Solutions

Tournament Equilibrium Set

• A tournament solution S is retentive if 
S(D ̅(a))⊆S(T) for all a∈S(T) and all tournaments T.
‣ Idea: No alternative in the choice set should be “properly” 

dominated by an outside alternative.

• TEQ is the smallest tournament solution satisfying retentiveness.
‣ Characterization relies on Schwartz’s conjecture.
‣ TEQ satisfies IRR and COM and is contained in BA.

• Example: TEQ = {a,b,c}
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(Schwartz, 1990)
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Tournament Solutions

The Mystery of TEQ
• Theorem (Laffond et al., 1993; Houy, 2009): The following 

statements are equivalent:
‣ Schwartz’s conjecture
‣ TEQ satisfies WSP.
‣ TEQ satisfies SSP.
‣ TEQ satisfies MON.
‣ TEQ satisfies IUA.

• Furthermore, these statements imply that TEQ is contained in MC.

• All or nothing: Either TEQ is a most appealing tournament solution 
or it is severely flawed.

• Theorem (B., Fischer, Harrenstein, Mair; 2010): Deciding whether 
an alternative is contained in TEQ is NP-hard.
‣ The best known upper bound is PSPACE!
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Tournament Solutions 21

M
O
N

MON WSP SSP IDE IUA COM IRR
EFFICIENTLY 

COMPUTABLE

CNL (Condorcet, 1785)✓ ✓ ✓ - - ✓ - - ✓
✓ ✓ ✓ - - - - - ✓

UC (Fishburn, 1977; 
Miller, 1980) ✓ ✓ ✓ - - - ✓ - ✓

BA (Banks, 1985) ✓ ✓ ✓ - - - ✓ ✓ NP-hard

TC (Good, 1971;
Smith, 1973) ✓ ✓ ✓ ✓ ✓ ✓ - - ✓

✓ ✓ ✓ ✓ ✓ ✓ - - ✓
MC (Dutta, 1988) ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓
ME (Brandt, 2008) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ NP-hard

TEQ (Schwartz, 1990) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ NP-hard
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