Price Prediction in Sports Betting Markets

Juan M. Alberola, Ana Garcia-Fornes and Agustín Espinosa

MATES2010, Leipzig

Grup de Tecnologia Informàtica i Intel·ligència Artificial Universitat Politècnica de València

jalberola@dsic.upv.es

September 2010

Prediction Market

<u>Prediction markets</u> are speculative markets created for the purpose of making predictions.

• Assets are created, whose final cash value is tied to:

- Particular event (will the next US president be a Republican??)
- Parameter (total sales next quarter)

The current market **prices** can then be interpreted as predictions of the probability of the event or the expected value of the parameter.

Prediction Market

<u>Prediction markets</u> are speculative markets created for the purpose of making predictions.

• Assets are created, whose final cash value is tied to:

- Particular event (will the next US president be a Republican??)
- Parameter (total sales next quarter)

The current market **prices** can then be interpreted as predictions of the probability of the event or the expected value of the parameter.

↓ Betting exchanges

- Assets regarding the outcomes of an event
- Price related with the probability of each outcome
- Participants exchange assets according their expectations

Each market

- n possible outcomes (n-way bet)
- price=1/probability

Trade

- Participants with different expectations
- On an outcome or against it (back/lay)
- Bookmaker receive offers
- $\bullet \ \, \mathsf{Compatible} \ \, \mathsf{ones} \ \, \mathsf{(price/size)} \to \mathsf{trade} \\$

Alice wants to bet μ units on a back bet (an individual, a team, a horse, etc.)

Alice wants to bet μ units on a back bet (an individual, a team, a horse, etc.)

- ullet Choose her own price ho
- Accept a lay offer

Alice wants to bet μ units on a back bet (an individual, a team, a horse, etc.)

- ullet Choose her own price ho
- Accept a lay offer

Bob wants to place a lay bet

Alice wants to bet μ units on a back bet (an individual, a team, a horse, etc.)

- ullet Choose her own price ho
- Accept a lay offer

Bob wants to place a lay bet

$$\operatorname{profit}(\operatorname{Alice}) = \left\{ \begin{array}{ll} \mu^*(\rho\text{-}1) & \text{if Alice wins the bet} \\ -\mu & \text{if Alice loses the bet} \end{array} \right.$$

$$\operatorname{profit}(\operatorname{Bob}) = \left\{ \begin{array}{ll} -\mu^*(\rho\text{-}1) & \text{if Alice wins the bet} \\ \mu & \text{if Alice loses the bet} \end{array} \right.$$

The price depends on the probability of the final outcome Fair coin flip game:

- ullet Probabilities of tails and heads ightarrow 0.5
- Fair price \rightarrow 2 (price = 1/probability))
- ullet Value o price higher

The price depends on the probability of the final outcome Fair coin flip game:

- ullet Probabilities of tails and heads ightarrow 0.5
- Fair price \rightarrow 2 (price = 1/probability))
- $\bullet \ \ Value \rightarrow price \ higher \rightarrow bet$

The price depends on the probability of the final outcome Fair coin flip game:

- ullet Probabilities of tails and heads ightarrow 0.5
- Fair price \rightarrow 2 (price = 1/probability))
- Value \rightarrow price higher \rightarrow bet

Bayer-Mainz (Bayer wins)

- Similar to an economic trader
- Make benefits whatever the final outcome is

- Similar to an economic trader
- Make benefits whatever the final outcome is
- Sports events → Short duration
- Quick price evolution → During the event

- Similar to an economic trader
- Make benefits whatever the final outcome is
- Sports events → Short duration
- Quick price evolution → During the event

Objective

To bet on and against an outcome at different prices:

Prediction of price evolution

Markets where the current price is going to change

- Up or down??
- How much??
- When??
- How fast??

Markets where the current price is going to change

- Up or down??
- How much??
- When??
- How fast??

Future price movements

CBR agent

- Similarities between events with similars conditions
- Tennis match: favourite is winning
- Soccer match: final score

CBR agent

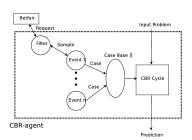
- Similarities between events with similars conditions
- Tennis match: favourite is winning
- Soccer match: final score

Objectives:

- Repeated patterns and similar price movements
- Observe price evolution
- Predict future price

Market Model

- Betfair
 - 6 million transactions in a average day
 - Mediator
- Bookmaker agent
 - Accept price requests
 - Show best prices (queue)
 - Place bets
- CBR agent


CBR agent

Data acquisition and creation of the case base:

- Interaction with the bookmaker
- Select information of events
- Store samples

CBR cycle:

- Unknown problem
- Retrieve using historical data
- Similarities between events
- Adapt solution
- Predict future price of the new event
- Store the sample

Price Prediction in Soccer Matches

- Barclays Premier League (2008-2009)
- Prediction in under/over 2.5 goals markets

Data aquisition

Several markets related with the 2.5 goals State of a soccer match as $\langle m, s, h, v, d, u, o \rangle$

- $0 \le m \le 45$
- $s \in \{0-0, 1-0, 0-1, 1-1\}$
- h, v, and d are from the match odds markets.
- *u* and *o* are the from the under/over 2.5 goals market.
- Each h, v, d, u and o has two real values $\langle b, I \rangle$

A sequence of samples $x_1, x_2, x_3, \dots x_n$ is created

Creating the case base

Prediction after δ minutes:

- $x_i = \langle m_i, s_i, h_i, v_i, d_i, u_i, o_i \rangle$ and $x_j = \langle m_j, s_j, h_j, v_j, d_j, u_j, o_j \rangle$
- $m_i m_i = \delta$
- $c^{\delta} = \langle m_i, s_i, h_i, v_i, d_i, u_i, o_i, u_j, o_j \rangle$

Creating the case base

Prediction after δ minutes:

- $x_i = \langle m_i, s_i, h_i, v_i, d_i, u_i, o_i \rangle$ and $x_j = \langle m_j, s_j, h_j, v_j, d_j, u_j, o_j \rangle$
- $m_i m_i = \delta$
- $c^{\delta} = \langle m_i, s_i, h_i, v_i, d_i, u_i, o_i, u_i, o_i \rangle$
- A case base $C^{\delta} = \{c^{\delta} \mid c^{\delta} \text{ is defined}\}$ is created

The CBR cycle

Similarity function:

- ullet Given C^δ and a unknown problem
 - $x = \langle m, s, h, v, d, \langle b_u, I_u \rangle, \langle b_o, I_o \rangle \rangle$
- Step 1
 - $c_r = \langle m_r, s_r, h_r, v_r, d_r, \langle b'_u, l'_u \rangle, \langle b'_o, l'_o \rangle, u^{\delta}, o^{\delta} \rangle$
 - $s = s_r \wedge \mid b_u b_u' \mid \leq \omega \wedge \mid I_u I_u' \mid \leq \omega \wedge \mid b_o b_o' \mid \leq \omega \wedge \mid I_o I_o' \mid \leq \omega$
- Step 2
 - $\mid m\text{-}m_r \mid < \pi$
- Step 3
 - $c_r = \langle m_r, s_r, h_r, v_r, d_r, \langle b_u, I_u \rangle, \langle b_o, I_o \rangle, \langle b'_u, I'_u \rangle, \langle b'_o, I'_o \rangle \rangle$
 - $e(b, u) = (b_u b'_u); e(l, u) = (l_u l'_u);$
 - $e(b, o) = (b_o b'_o); \ e(l, o) = (l_o l'_o)$
 - $A(b, u) = \frac{1}{R} \sum_{r=1}^{R} e(b, u)_r$; $A(l, u) = \frac{1}{R} \sum_{r=1}^{R} e(l, u)_r$
 - $A(b,o) = \frac{1}{R} \sum_{r=1}^{R} e(b,o)_r$; $A(l,o) = \frac{1}{R} \sum_{r=1}^{R} e(l,o)_r$

The CBR cycle

```
Input problem x = \langle m, s, h, v, d, \langle b_u, l_u \rangle \langle b_o, l_o \rangle \rangle

A(b, u), A(l, u), A(b, o), A(l, o)

predicted(p, k) = p_k + A(p, k) for each p = \{b, l\} and k = \{u, o\}.
```

- Step 4: Retain (threshold)
- Step 1: no case is retrieved
 - Increase the threshold up to a twice
 - Use h, v and d
- Step 2: no case is retrieved
 - Increase π

Results

Error Rate	50 cases				150 cases				250 cases			
	Under		Over		Under		Over		Under		Over	
	В	L	В	L	В	L	В	L	В	L	В	L
Prediction for the next minute												
±0,02	73	63	71	64	81	75	72	71	83	78	69	73
±0,03	85	78	81	77	89	85	85	80	91	88	83	82
±0,05	93	93	95	90	96	95	95	91	97	97	95	94
±0,1	100	99	99	99	99	99	99	99	100	100	99	99
Prediction for the next 5 minutes												
±0,02	44	46	42	44	62	60	50	46	68	68	46	49
±0,03	52	66	56	56	72	70	54	62	74	77	65	71
±0,05	74	80	72	76	82	86	78	80	94	87	94	84
±0,1	96	94	88	96	100	96	88	92	100	100	100	97
Prediction for the next 10 minutes												
±0,02	32	41	22	32	54	38	32	35	63	62	44	44
±0,03	43	49	32	41	68	49	43	51	69	67	62	64
±0,05	59	65	41	49	84	73	65	73	91	88	84	80
±0,1	84	86	70	84	100	89	79	95	100	98	96	97
Prediction for the next 15 minutes												
±0,02	43	47	17	23	57	57	43	37	64	66	45	42
±0,03	53	50	37	30	73	67	50	43	74	70	61	64
±0,05	67	67	40	47	91	80	60	57	94	89	87	86
±0,1	97	90	63	77	100	93	73	80	100	98	95	97

Results

Success rates for price direction prediction in the next minute:

Event	Price Direction	
	Accuracy $[\pm 0,03]$	%
Match 1	34	0.77
Match 2	30	0.68
Match 3	39	0.89
Match 4	30	0.68

Conclusions

- Sports Betting Markets can be approached as trading scenarios
- Predict future prices becomes important
- How, how much, when and how fast the price is going to move
- CBR agent

Conclusions

- Sports Betting Markets can be approached as trading scenarios
- Predict future prices becomes important
- How, how much, when and how fast the price is going to move
- CBR agent
- Future price prediction → TRADING!!
- CDA MAS-based scenario for comparing heterogeneous agents performance
- Compare the accuracy with humans

Price Prediction in Sports Betting Markets

Juan M. Alberola, Ana Garcia-Fornes and Agustín Espinosa

MATES2010, Leipzig

Grup de Tecnologia Informàtica i Intel·ligència Artificial Universitat Politècnica de València

jalberola@dsic.upv.es

September 2010