Evaluation of Techniques for a Learning-Driven Modeling Methodology in Multiagent Simulation

Robert Junges (<u>robert.junges@oru.se</u>) Franziska Kluegl (<u>franziska.klugl@oru.se</u>) Modeling and Simulation Research Center Örebro University - Sweden

MATES 2010

Agenda

- Motivation
- Learning-Driven Modeling Methodology
- Learning Techniques
- Test Case: Pedestrian Evacuation Scenario
- Conclusions and Next Steps

Motivation

- Multiagent simulation model design:
 - Often trial and error process
 - Often unclear level of detail
 - How to create the proper agent behavior?
 - Agent model outcome X Meso Level X Overall simulation outcome

Motivation

- Multiagent simulation model design:
 - Often trial and error process
 - Often unclear level of detail
 - How to create the proper agent behavior?
 - Agent model outcome X Meso Level X Overall simulation outcome
- Suggestion: Agent Learning for Behavior Modeling

Design Strategy

- 1. Develop a model of the environment
- 2. Define the perceptions and actions of the agents
- 3. Describe the intended outcome: reward function on the performance of the agent
- 4. Apply an agent learning technique
- Analyze and test learned behavior for validity if not go back to step 1

Model Design Support

- Human modeler is in charge of the model
 - Takes responsibility for model quality
 - Our aim: support for modeler providing inspiration
 about local behavior
- Learning must produce optimal and readable
 output
 - Feasibility
 - Interpretability
 - Plausibility

Question...

• What would be a good agent learning technique to cope with the requirements of this methodology?

Question...

- What would be a good agent learning technique to cope with the requirements of this methodology?
- Candidates...
 - XCS Learning Classifier Systems
 - Q-Learning Reinforcement Learning
 - FFNN Neural Networks

XCS - Learning Classifier System

- Iterative online learning system
- Knowledge represented by a fixed-size population of condition-action-prediction classifiers
 - Classifiers predict the reward and actions given the conditions
 - Reinforcement Learning-based technique
- GA component \rightarrow discovery of new classifiers
 - Fitness selection: accuracy

Q-Learning - Reinforcement Learning

- Reinforcement learning technique
- Develops an action-value function
 - Expected utility for action A in a specific state S
 - Q-Table: situation-action pairs + Q-Value

FFNN – Neural Networks

- Artificial neural network
 - Information moves forward
- Our methodology is designed for online rewardbased learning...
 - FFNN \rightarrow supervised training
 - We modified the overall learning process:

Test Case Scenario - Environment

- Pedestrian evacuation scenario
 - 20x30 room with column-type obstacles and 1 exit
 - 1, 2 and 5 agents positioned in the upper-half of the room
 - 1, 5 and 10 obstacles
 - 100 explore-exploit trials each simulation

Scenario Perception - Action

- Perceptions: Obstacle and Exit
- Actions
 - Move_{Straight}, Move_{Left}, Move_{Right}, Move_{SlightlyLeft}, Move_{SlightlyRight}, StepBack, Noop
- MDP on collision avoidance

Scenario Rewards

- Reward = Reward_{Exit} + Reward_{Distance} + Collision
- Where:
 - Reward_{Exit} = 200 for exit or 0 otherwise
 - Reward_{Distance} = $\beta x [d_t(exit) d_{t-1}(exit)]$, with $\beta = 5$
 - Collision = 100 for a collision free movement, 0 for no movement, and -100 if a collision occurred

Learning Examples

5 Agents and 10 Obstacles, FFNN

Learning Examples

- XCS
 - 160 rules
 - 71.25% positive reward
 - Generalization through don't care bits
- Q-Learning
 - 1961 rules
 - 44% not experienced; Q-Value = 0
 - No generalization
- FFNN
 - Last exploit round used 45 rules
 - Selection of best actions for each situation
 - No learning from negative experience

XCS Rules Strength

Q-Learning Reward Distribution

FFNN Rules Fitness Distribution

Final Rules Example

• XCS rules: 5 best rules

Condition (bit string)	Condition Interpretation	Action	Strength	Fitness	Experience
*****0*****0*****	No obstacle immediately right No obstacle near left	$Move_{SlightlyRight}$	111.12	0.71	61
****0*0******0*****	No obstacle immediately ahead or right No obstacle near left	$Move_{Straight}$	101.32	0.58	61
00*0*0***0*0*0**	No obstacle immediately left No exit near left, right or ahead	$Move_{SlightlyLeft}$	88.30	0.56	81
0**0******00**010**	No obstacle or exit left No exit ahead or right Obstacle near right	$Move_{Left}$	81.62	0.69	24
01**00*1*00*0	No obstacle right No exit left Obstacle ahead	$Move_{SlightlyRight}$	65.1	0.41	21

Conclusions - XCS

- Better interpretation of rules
 - Reward prediction
 - Fitness
 - Experience
- Generalization: don't care bits
- Evolutionary rule discovery

Conclusions – Q-Learning

- Less computation time
- State-action pairs table offers a good base for model design
- However, large set of rules...
 - How to generalize and interpret these rules?
 Post processing?
 - Rules measured only by reward prediction

Conclusions - FFNN

- Less performance in this implementation
- Training does not consider utility value
 - Does not consider similarity of actions in terms of Q-Values
 - Does not consider actions to avoid: negative Q-Value
- Black box system

Conclusions

- Investigation towards a learning-driven methodology by evaluating different learning techniques
- In a small evacuation scenario, the employed learning produced plausible behavior in an agentbased simulation
 - No clear technique showed the best performance
 - XCS technique outclasses the two other when it comes to the accessibility and usability of the learned behavior model

Next Steps

- How to improve generalization and interpretation of the rules learned (reinforcement learning case)?
 - Learning convergence
 - Post processing step
- More complex scenarios
- Other techniques: evolutionary programming, other reinforcement learning
- Catalogue of properties to show the appropriateness of the learning techniques
- Integration of the behavior into explicit models

Thank you!